Гравитация - самая таинственная сила во Вселенной. Ученые до сих пор не знают ее природы. Но именно гравитация удерживает на орбитах планеты Солнечной системы. Не будь силы тяготения, планеты разлетелись бы от Солнца, как бильярдные шары от удара кием.

Гравитация – сила тяготения

Если же смотреть глубже, то станет ясно, что не было бы гравитации, не было бы и самих планет. Сила тяготения - притяжение материи к материи - это та сила, которая собрала вещество в планеты и придала им круглую форму.

Силы тяготения Солнца вполне хватает на то, что бы удерживать девять планет, десятки их спутников и тысячи астероидов и комет. Вся эта компания роем вращается вокруг Солнца, как мотыльки вокруг освещенного балкона. Если бы не было силы тяготения, эти планеты, спутники и кометы полетели бы каждый своим путем по прямой линии. Вместо этого они вращаются вокруг Солнца по своим орбитам, потому что Солнце силой своего притяжения постоянно искривляет их прямолинейную траекторию, притягивая к себе планеты, луны и кометы с астероидами.

Материалы по теме:

Почему ночью темно?

Гравитация и расстояние между объектами

Планеты кружатся вокруг светила, подобно тому, как пони, катающие детей, ходят по кругу, привязанные к столбу в центре этого круга. Разница только в способе привязки. Космические тела привязаны к Солнцу невидимыми нитями гравитации. Правда, чем больше расстояние между объектами, тем меньше сила притяжения между ними. Солнце гораздо слабее притягивает планету Плутон, самую дальнюю в Солнечной системе , чем, скажем, Меркурий или Венеру. Сила гравитации уменьшается (или увеличивается) в зависимости от расстояния экспоненциально.

Что это значит? Если бы, например, Земля была удалена от Солнца в два раза больше, чем сейчас, то сила притяжения уменьшилась бы в четыре раза. Если увеличить расстояние между Солнцем и Землей в три раза, то сила тяготения уменьшилась бы в девять раз. И так далее. Если «отодвинуть» Землю достаточно далеко и свести практически к нулю силу тяготения, то Земля может разорвать путы солнечного притяжения и отправиться в самостоятельное межзвездное плавание.

Меркурий, Венера, Земля и Марс представляют внутренний пояс малых планет, состоящих из твёрдых пород - силикатов, они имеют атмосферу: - На Меркурии атмосфера отмечается лишь в виде атомарного состояния.

Венера по своим размерам почти равна Земле. Однако атмосфера на Венере в 90 раз плотнее Земной, а температура на её поверхности на уровне +400 С. - Марс меньше Земли и в 10 раз легче. Атмосфера очень разряжённая = 0,6%

От Земной. На поверхности Марса есть вулканы.

Во внутреннем поясе солнечных планет, Земля самая крупная и самая плотная.

Более дальние от Солнца планеты, - Юпитер, Сатурн, Уран, Нептун и Плутон, являются планетами гигантами и состоят они из застывших газов, - водород, гелий, амиак, метан и азот.

Сатурн .

Потухшая звезда.

Сатурн, самая медленная и тяжелая планета в солнечной системе.

В 763 раза больше Земли.

В 95 раз тяжелее Земли.

Подобно Солнцу и Юпитеру, имеет астероидные кольца, спутники.

Имеет 62 спутника. 17 отвечают статусу - Малые Планеты.

Снимок Сатурна, сделанный космическим аппаратом Кассини-Гюйгенс.

Теория про Фаэтон.

Не так давно астрономы нашли доказательство того, что в Солнечной Системе между Юпитером и Марсом была еще одна планета.

Доказательством является то, что сейчас там находится так называемый пояс астероидов (состоит примерно из 400 000 астероидов), и вот на них найдены следы органических молекул, а это значит, что астероиды откололись от планеты. По одной из гипотез – это планета Фаэтон.

Это подтверждает и известное правило Тициуса-Боде. Правило Тициуса - Боде представляет собой эмпирическую формулу, приблизительно описывающую расстояния между планетами Солнечной системы и Солнцем (средние радиусы орбит). Правило не привлекало большого внимания до тех пор, пока в 1781 году не был открыт Уран, который почти точно лёг на предсказанную последовательность. А затем Фаэтон представили как недостающую по этой формуле планету. Когда-то давно во время парада планет она столкнулась с Марсом, и после этого, Марс стал безжизненным. Подобная участь ожидала и Землю, но большую часть энергии погасил Марс.

Противники этой теории утверждают, что каждая планета имеет ядро, которое среди астероидов не обнаружили. Соответственно, нет ядра – а, значит, и планеты не было.

И тут у ученых появляется объяснение – Луна и есть то самое ядро. Оказывается, во многих хрониках, мифах и преданиях говорится, что как раз Луны-то на небе не было. А появилась она после Всемирного потопа. Вспомним о том, что приливами и отливами на нашей планете «управляет» Луна. Тогда можно предположить какой силы мог быть прилив, когда ядро Фаэтона появилось так близко от поверхности Земли. Массы воды, в том числе, которые были под землей, приливными силами были подняты на поверхность. Это и был потоп.

Известно также, что более чем 12 тысяч лет назад год равнялся 360 дням. Увеличение года на пять дней ученые объясняют так: масса Земли увеличилась за счет присутствия Луны, планета отошла дальше от Солнца, орбита стала больше, и год увеличился на пять дней.

Но отметим, что далеко не все согласны с теорией про Фаэтон и Луну. Некоторые считают, что пояс астероидов является не разрушенной планетой, а планетой, которая так и не смогла сформироваться ввиду гравитационного влияния Юпитера и отчасти других планет-гигантов.

Гравитационное влияние, однако, уменьшается, как квадрат расстояния. Расстояние Солнца от Земли в 390 раз больше, чем Луны от Земли, а 390 х 390 = 152 000. Если мы разделим 27 000 000 на это число, мы получим, что гравитационное притяжение Солнца действует на Землю в 178 раз сильнее, чем лунное.

Несмотря на то, что сила лунного притяжения, действующая на нас, составляет только 0,56 процента от силы притяжения Солнца, это все-таки намного больше, чем любое другое гравитационное воздействие на нас. Так, лунное притяжение в 106 раз больше, чем притяжение Юпитера, когда он расположен ближе всего, и в 167 раз больше, чем притяжение Венеры, когда она ближе всего. Гравитационное воздействие на Землю остальных астрономических объектов еще меньше.

Может ли гравитационное притяжение, когда оно столь велико по сравнению со всеми другими объектами, кроме Солнца, оказаться для нас источником катастрофы? На первый взгляд кажется, что нет, не может, ведь гравитационное притяжение Солнца намного сильнее, чем у Луны. И поскольку первое не вызывает у нас тревоги, то почему же должно беспокоить второе?

Отрицательный ответ был бы правильным, если бы астрономические тела реагировали на силу гравитации во всех точках одинаково. Но это не так. Давайте вернемся к вопросу приливо-отливных эффектов, о которых я упомянул в предыдущей главе, и рассмотрим его более детально в отношении Луны.

Поверхность Земли, обращенная к Луне, находится на среднем расстоянии от центра Луны в 378 026 километров. Поверхность Земли на другой стороне от Луны дальше от центра Луны на толщину Земли и, следовательно, находится на расстоянии в 390 782 километра.

Сила притяжения Луны уменьшается, как квадрат расстояния. Если расстояние от центра Земли до центра Луны принять за 1, тогда расстояние от поверхности Земли, обращенной к Луне, составит 0,983, а расстояние от поверхности, обращенной прочь от Луны, составит 1,017.

Если сила притяжения поверхности Земли, обращенной к Луне, таким образом, 1,034, то сила притяжения поверхности Земли, обращенной прочь от Луны, составляет 0,966. Это означает, что притяжение Луной ближайшей поверхности Земли на 7 процентов сильнее, чем притяжение дальней поверхности Земли.

Результатом силы притяжения Луны, изменяющейся с расстоянием, является то, что Земля тянется к Луне. Сторона, находящаяся ближе к Луне, притягивается сильнее, чем центр, а центр, в свою очередь, притягивается сильнее, чем сторона, расположенная в сторону от Луны. В результате Земля деформируется с обеих сторон. Одна деформация – стороны, обращенной к Луне, происходит, так сказать, более энергично, чем остальной структуры Земли. Другая деформация – стороны, обращенной прочь от Луны, так сказать, отстает от всего остального.

Так как Земля состоит из неэластичного камня, который особенно не поддается даже большим усилиям, деформация в твердом теле Земли невелика, но она есть. Однако вода океана более податлива и деформируется сильнее, она «выпячивается» в направлении к Луне.

При вращении Земли континенты, оказываясь, так сказать, «под Луной», испытывают накат «выпяченной» воды. Вода по инерции набегает несколько выше береговой линии, затем отступает, происходят приливы и отливы. На противоположной, обращенной в сторону от Луны стороне Земли повернувшиеся туда континенты испытывают другую деформацию воды, через 12,5 часа происходит прилив, затем отлив. (Дополнительные полчаса набегают из-за того, что Луна за это время продвигается на некоторое расстояние.) Таким образом происходят два прилива и два отлива в день.

Приливо-отливный эффект, производимый на Земле любым телом, пропорционален его массе, но уменьшается, как расстояние в кубе. Солнце (повторим) в 27 миллионов раз массивнее Луны и в 390 раз дальше от Земли. 390 в кубе составляет около 59 300 000. Если мы поделим массу Солнца (соответственно Луны) на куб его расстояния от Земли (соответственно Луны), мы обнаружим, что приливо-отливный эффект Солнца на Землю составляет лишь 0,46 от приливо-отливного эффекта Луны.

Итак, Луна является основной причиной приливо-отливного эффекта на Земле, а Солнце значительно уступает ей. Все другие астрономические тела вообще не производят измеримого приливо-отливного эффекта на Землю.

Теперь нам следует спросить: не может ли существование приливов и отливов каким-нибудь образом привести к катастрофе?

Более длинный день

Говорить о приливах-отливах и о катастрофах, не переводя дыхания, по-видимому, было бы странно. В человеческой истории приливы и отливы существовали всегда, и они были совершенно регулярны и предсказуемы. Они всегда были полезны. Так, корабли обычно отплывали с началом прилива, когда вода поднимала их высоко над любыми скрытыми препятствиями, а отступающая вода несла корабль в нужном ему направлении.

Приливы и отливы и в будущем могут стать полезными иным образом. Так, во время прилива вода может подняться в резервуар, из которого может выйти при отливе, вращая турбину. Приливы и отливы могут таким образом дать миру неиссякаемый источник энергии. При чем же тут катастрофа?

Так вот, когда Земля поворачивается и на сушу накатывается вспучившаяся вода, двигаясь на берег и с берега, вода должна преодолеть сопротивление трения, и не только на самом берегу, но и на тех участках морского дна, где океан, случается, бывает особенно мелководен. Часть энергии вращения Земли затрачивается на преодоление этого трения.

Когда Земля поворачивается, твердое тело планеты тоже деформируется, выпячиваясь в сторону Луны, и это выпячивание составляет примерно одну треть от выпячивания океана. Тем не менее выпячивание твердого тела Земли происходит за счет, так сказать, трения камня о камень, когда кора тянется кверху и опускается, и этот процесс повторяется снова и снова. Часть энергии вращения Земли затрачивается на это тоже. Конечно, энергия на самом деле не уничтожается. Она не исчезает, а превращается в тепло. Другими словами, в результате приливов и отливов Земля приобретает немножко тепла и немного теряет в скорости вращения. День становится длиннее.

Все мы проходили закон всемирного тяготения в школе. Но что мы на самом деле знаем о гравитации, помимо информации, вложенной в наши головы школьными учителями? Давайте обновим наши познания…

Факт первый

Всем известна знаменитая притча о яблоке, которое упало на голову Ньютону. Но дело в том, что Ньютон не открывал закона всемирного тяготения, так как этот закон просто напросто отсутствует в его книге “Математические начала натуральной философии”. В этом труде нет ни формулы, ни формулировки, в чём каждый желающий может убедиться сам. Более того, первое упоминание о гравитационной постоянной появляется только в 19-м веке и соответственно, формула, не могла появиться раньше. К слову сказать, коэффициент G, уменьшающий результат вычислений в 600 миллиардов раз не имеет никакого физического смысла, и введён для сокрытия противоречий.

Факт второй

Считается, что Кавендиш первый продемонстрировал гравитационное притяжение у лабораторных болваночек, использовав крутильные весы – горизонтальное коромысло с грузиками на концах, подвешенных на тонкой струне. Коромысло могло поворачиваться на тонкой проволоке. Согласно официальной версии, Кавендиш приблизил к грузикам коромысла пару болванок по 158 кг с противоположных сторон и коромысло повернулось на небольшой угол.Однако методика опыта была некорректной и результаты были сфальсифицированы, что убедительно доказано . Кавендиш долго переделывал и настраивал установку, чтобы результаты подходили под высказанную Ньютоном среднюю плотность земли. Методика самого опыта предусматривала движение болванок несколько раз, а причинойповорота коромысла служилимикровибрации от движения болванок, которые передавались на подвес.

Это подтверждается тем, что такая простейшая установка 17 века в учебных целях должна была бы стоять если не в каждой школе, то хотя бы на физических факультетах ВУЗОВ, чтобы на практике показывать студентам результат действия закона Всемирного тяготения. Однако установка Кавендиша не используется в учебных программах, и школьники, и студенты верят на слово, что две болванки притягивают друг друга.

Факт третий

Если подставить в формулу закона всемирного тяготения справочные данные по земле, луне и солнцу, то в момент, когда Луна пролетает между Землёй и Солнцем, например, в момент солнечного затмения, сила притяжения между Солнцем и Луной более чем в 2 раза выше, чем между Землёй и Луной!

Согласно формуле Луна должна была бы уйти с орбиты земли и начать вращаться вокруг солнца.

Гравитационная постоянная – 6,6725×10 −11 м³/(кг·с²).

Масса Луны – 7,3477×10 22 кг.

Масса Солнца – 1,9891×10 30 кг.

Масса Земли – 5,9737×10 24 кг.

Расстояние между Землёй и Луной = 380 000 000 м.

Расстояние между Луной и Солнцем = 149 000 000 000 м.

Земля и Луна:

6,6725×10 -11 х 7,3477×10 22 х 5,9737×10 24 / 380000000 2 = 2,028×10 20 H

Луна и Солнце:

6,6725×10 -11 х 7,3477·10 22 х 1,9891·10 30 / 149000000000 2 = 4,39×10 20 H

2,028×10 20 H << 4,39×10 20 H

Сила притяжения между Землёй и Луной << Сила притяжения между Луной и Солнцем

Эти вычисления можно критиковать тем, что и справочная плотность этого небесного тела скорее всего определена не правильно.

Действительно, экспериментальные свидетельства говорят о том, что Луна представляет из себя не сплошное тело, а тонкостенную оболочку. Авторитетный журнал Сайенс описывает результаты работы сейсмодатчиков после удара о поверхность Луны третьей ступени ракеты, разгонявшей корабль «Аполлон-13»: «сейсмозвон детектировался в течение более четырёх часов. На Земле, при ударе ракеты на эквивалентном удалении, сигнал длился бы всего несколько минут».

Сейсмические колебания, которые затухают так медленно, типичны для полого резонатора, а не для сплошного тела.

Но Луна помимо прочего не проявляет своих притягивающих свойств по отношению к Земле – пара Земля-Луна движется не вокруг общего центра масс , как это было бы по закону всемирного тяготения, и эллипсоидная орбита Земли вопреки этому закону не становится зигзагообразной.

Более того, параметры орбиты самой Луны не остаются постоянными, орбита по научной терминологии “эволюционирует”, причём делает это вопреки закону всемирного тяготения.

Факт четвёртый

Как же так, возразят некоторые, ведь даже школьники знают про океанские приливы на Земле, которые происходят из-за притяжения воды к Солнцу и Луне.

По теории тяготение Луны формирует приливной эллипсоид в океане, с двумя приливными горбами, которые из-за суточного вращения перемещаются по поверхности Земли.

Однако практика показывает абсурдность этих теорий. Ведь согласно ним приливный горб высотой 1 метр за 6 часов должен через пролив Дрейка переместиться из Тихого океана в Атлантический. Поскольку вода несжимаема, то масса воды подняла бы уровень на высоту около 10 метров, чего не происходит на практике. На практике приливные явления происходят автономно в областях 1000-2000 км.

Ещё Лапласа изумлял парадокс: почему в морских портах Франции полная вода наступает последовательно, хотя по концепции приливного эллипсоида она должна наступать там одновременно.

Факт пятый

Принцип измерений гравитации прост – гравиметры измеряют вертикальные компоненты, а отклонение отвеса показывает горизонтальные компоненты.

Первая попытка проверки теории тяготения масс была предпринята англичанами в середине 18 века на берегу Индийского океана, где, с одной стороны находится высочайшая в мире каменная гряда Гималаев, а с другой – чаша океана, заполненная куда менее массивной водой. Но, увы, отвес в сторону Гималаев не отклоняется! Более того, сверхчувствительные приборы – гравиметры – не обнаруживают разницы в тяжести пробного тела на одинаковой высоте какнад массивными горами, так и над менее плотными морями километровой глубины.

Чтобы спасти прижившуюся теорию, учёные придумали для неё подпорку: мол причиной тому «изостазия» – под морями располагаются более плотные породы, а под горами – рыхлые, причём плотность их точь-в-точь такая, чтоб подогнать всё под нужное значение.

Также опытным путём было установлено, что гравиметры в глубоких шахтах показывают, сила тяжести, не уменьшающуюся с глубиной. Она продолжает расти, будучи зависимой только от квадрата расстояния до центра земли.

Факт шестой

Согласно формуле закона всемирного тяготения, Два массы, м1 и м2, размерами которых можно пренебречь по сравнению с расстояниями между ними, якобы притягиваются друг к другу силой, прямо пропорциональной произведению этим масс и обратно пропорционально квадрату расстояния между ними. Однако, фактически, неизвестно ни одного доказательства того, что вещество обладает гравитационным притягивающим действием. Практика показывает, что тяготение порождается не веществом и не массами, оно независимо от них и массивные тела лишь подчиняются тяготению.

Независимость тяготения от вещества подтверждается тем, что за редчайшим исключением, у малых тел солнечной системы гравитационная притягивающая способность отсутствует полностью. За исключением Луны и Титана у более чем шести десятков спутников планет признаков собственного тяготения не наблюдается. Это доказано как косвенными, так и прямыми измерениями, например, с 2004 года зонд Кассени в окрестностях Сатурна время от времени пролетает рядом с его спутниками, однако изменений скорости зонда не зафиксировано. С помощью того же Кассени был обнаружен гейзер на Энцеладе - шестом по размеру спутник Сатурна.

Какие физические процессы должны происходить на космическом куске льда, чтобы струи пара улетали в космос?

По той же причине у Титана, крупнейшего спутника Сатурна, наблюдаетсягазовых хвост как следствие стока атмосферы.


Не найдено предсказанных теорией спутников у астероидов, несмотря на их огромное количество. А во всех сообщениях о двойных, или парных астероидах, которые якобы вращаются вокруг общего центра масс, свидетельств об обращении этих пар не было. Компаньоны случайно оказывались рядом, двигаясь по квазисинхронным орбитам вокруг солнца.

Предпринятые попытки вывести на орбиту астероидов искусственные спутники окончились крахом. В качестве примеров можно привести зонд NEAR, который подгоняли к астероиду Эрос американцы, или зонд ХАЯБУСА, который японцы отправили к астероиду Итокава.

Факт седьмой

В своё время Лагранж, пытаясь решить задачу трёх тел, получил устойчивое решения для частного случая. Он показал, что третье тело может двигаться по орбите второго, всё время находясь в одной из двух точек, одна из которых опережает второе тело на 60°, а вторая на столько же отстаёт.

Однако две группы компаньонов-астероидов, найденныепозади и впередина орбите Сатурна, и которые астрономы на радостях назвали Троянцами, вышли из прогнозируемых областей, и подтверждение закона всемирного тяготения обернулось проколом.

Факт восьмой

По современным представлениям скорость света конечна, в результате удалённые объекты мы видим не там, где они расположены в данный момент, а в той точке, откуда стартовал увиденный нами луч света. Но с какойскоростью распространяется тяготение? Проанализировав данные, накопленные ещё к тому времени, Лаплас установил, что «гравитация» распространяется быстрее света, как минимум, на семь порядков! Современные измерения по приёму импульсов пульсаров отодвинули скорость распространения гравитации ещё дальше – как минимум, на 10 порядков быстрей скорости света. Таким образом, эксперементальные исследования входят в противоречине собщей теорией относительности, на которую до сих пор опирается официальная наука, несмотря на её полную несостоятельность.

Факт девятый

Существуют природные аномалии гравитации, которые также не находят никакого внятного объяснения у официальной науки. Вот несколько примеров:

Факт десятый

Существует большое количество альтернативных исследований с впечатляющими результатами в области антигравитации, которые в корне опровергают теоретические выкладки официальной науки.

Некоторые исследователи анализируютвибрационную природу антигравитации. Этот эффект наглядно представлен в современном опыте, где капли за счёт акустической левитации висят в воздухе. Здесь мы видим, как с помощью звука определённой частоты удаётся уверенно удерживать капли жидкости в воздухе…

А вот эффект на первый взгляд объясняется принципом гироскопа, однако даже такой простой опыт по большей частипротиворечит гравитации в её современном понимании.

Виктор Степанович умер при довольно странных обстоятельствах и его наработки частично были утеряны, однако некоторая часть прототипа анти-гравитационной платформы сохранилась и её можно увидеть в музее Гребенникова в Новосибирске.

Ещё одно практическое применение антигравитации можно наблюдать в городе Хоумстед во Флориде, где находится странная структура из коралловых монолитных глыб, которую в народе прозвали . Он построен выходцем из Латвии - Эдвардом Лидскалнином в первой половине 20го века. У этого мужчины худощавого телосложения не было никаких инструментов, не было даже машины и вообще никакой техники.

Он совсем не использовался электричеством, также по причине его отсутствия, и тем не менее каким-то образом спускался к океану, где вытесывал многотонные каменные блоки и как-то доставлял их на свой участок. выкладывая с идеальной точностью.


После смерти Эда ученые принялись тщательно изучать его творение. Ради эксперимента был пригнан мощнейший бульдозер, и предпринята попытка сдвинуть с места одну из 30-тонных глыб кораллового замка. Бульдозер ревел, буксовал, но так и не сдвинул огромный камень.

Внутри замка был найден странный прибор, который ученые назвали генератором постоянного тока. Это была массивная конструкция с множеством металлических деталей. По внешней стороне устройства были встроены 240 постоянных полосовых магнитов. Но как на самом деле Эдвард Лидскалнин заставлял двигаться многотонные блоки, до сих пор остаётся загадкой.

Известны исследования Джона Сёрла, в руках которого оживали, вращались и вырабатывали энергию необычные генераторы; диски диаметром от полуметра до 10 метров поднимались в воздух и совершали управляемые полеты из Лондона в Корнуолл и обратно.

Эксперименты профессора повторили в России, США и на Тайване. В России, например, в 1999 году под № 99122275/09 была зарегистрирована заявка на патент «устройства для выработки механической энергии». Владимир Витальевич Рощин и Сергей Михайлович Годин, по сути, воспроизвели SEG (Searl Effect Generator - генератор на Сёрл-эффекте) и провели ряд исследований с ним. Итогом стала констатация: можно получить без затрат 7 КВт электроэнергии; вращающийся генератор терял в весе до 40%.

Оборудование первой лаборатории Сёрла было вывезено в неизвестном направлении, пока сам он был в тюрьме. Установка Година и Рощина просто пропала; все публикации о ней, за исключением заявки на изобретение, исчезли.

Известен также Эффект Хатчисона, названный в честь канадского инженера-изобретателя. Эффект проявляется в левитации тяжелых объектов, сплаве разнородных материалов (например металл+дерево), аномальном разогревании металлов при отсутствии вблизи них горящих веществ. Вот видеозапись этих эффектов:

Чем бы не была гравитация на самом деле, следует признать, что официальная наука совершенно не способна внятно объяснить природу этого явления.

Ярослав Яргин

Что же еще можно понять, зная о существовании тяготения? Всем известно, что Земля круглая. А почему? Ну, это понятно: конечно, благодаря тяготению. Земля круглая просто потому, что между всеми телами существует притяжение, и все, из чего возникла Земля, тоже взаимно притягивалось до тех пор, пока было куда притягиваться! Точнее говоря, Земля не совсем шар; она ведь вращается, и центробежная сила на экваторе противодействует тяготению. Выходит, что Земля должна быть эллипсоидом, и можно даже получить правильную его форму. Итак, из закона тяготения следует, что и Солнце, и Луна, и Земля должны быть (приблизительно) шарами.

Что же еще следует из закона тяготения? Наблюдая за спутниками Юпитера, можно понять все законы их движения вокруг планеты. В этой связи стоит рассказать об одной заминке, которая вышла у закона тяготения с лунами Юпитера.

Эти спутники очень подробно изучались Рёмером, и вот он заметил, что временами они нарушают расписание: то опаздывают, то приходят в назначенное место раньше времени (расписание можно составить, понаблюдав за ними достаточно долго и подсчитав по многим оборотам средний период обращения). Более того, он заметил, что опоздания случаются, когда Юпитер удален от Земли, а когда мы от Юпитера близко, то движение лун опережает расписание. Такую вещь очень трудно было уложить в закон тяготения, и ему бы угрожала безвременная кончина, не найдись другого объяснения. Ведь если закону противоречит хотя бы один случай, то закон неверен. Но причина расхождения оказалась очень естественной и красивой: дело просто в том, что необходимо какое-то время, чтобы увидеть луну на нужном месте, ведь свет от нее до нас доходит не мгновенно. Время это небольшое, когда Юпитер находится близко к Земле, но оно затягивается, когда Юпитер удалится от нее. Вот почему кажется, что луны в среднем торопятся или отстают в зависимости от того, близко ли или далеко они находятся от Земли. Это явление доказало, что свет распространяется не мгновенно, и снабдило нас первой оценкой его скорости (было это в 1676 г.).
Если все планеты притягиваются друг к другу, то сила, управляющая, скажем, обращением Юпитера вокруг Солнца, это не совсем сила притяжения к Солнцу; ведь есть еще и притяжение, например, Сатурна. Оно невелико (Солнце куда больше Сатурна), но оно есть, и потому орбита Юпитера не может быть точным эллипсом; она чуть колеблется относительно эллиптической траектории, так что движение несколько усложняется. Были предприняты попытки проанализировать движение Юпитера, Сатурна и Урана на основе закона тяготения. Чтобы узнать, удастся ли мелкие отклонения и неправильности в движении планет полностью объяснить только на основе одного этого закона, рассчитали влияние каждой из них на остальные. Для Юпитера и Сатурна все сошло как следует, но Уран -что за чудеса! - повел себя очень странно. Он двигался не по точному эллипсу, чего, впрочем, и следовало ожидать из-за влияния притяжения Юпитера и Сатурна. Но и с учетом их притяжения движение Урана все равно было неправильным; таким образом, законы тяготения оказались в опасности (возможность эту нельзя было исключить). Двое ученых, Адаме и Леверрье, в Англии и Франции, независимо задумались об иной возможности; нет ли там еще одной планеты, тусклой и невидимой, пока еще не открытой. Эта планета, назовем ее N, могла притягивать Уран. Они рассчитали, где эта планета должна находиться, чтобы причинить наблюдаемые возмущения пути Урана. В соответствующие обсерватории они разослали письма, в которых говорилось: «Господа, направьте свои телескопы в такое-то место - и вы увидите там новую планету». Обратят ли на вас внимание или нет, часто зависит от того, с кем вы работаете. На Леверрье обратили внимание, послушались его и обнаружили планету N! Тогда и другая обсерватория поспешила начать наблюдения - и тоже увидела ее.

Это открытие показывает, что в солнечной системе законы Ньютона абсолютно верны. Но верны ли они на расстояниях, больших, чем относительно малые расстояния до планет? Во-первых, можно поставить вопрос: притягивают ли звезды друг друга так же, как планеты? Положительные доказательства этого мы находим в двойных звездах. На фиг. 7.6 показана двойная звезда- две близкие звезды (третья звезда нужна, чтобы убедиться, что фотография не перевернута); вторая фотография сделана через несколько лет. Сравнивая с «фиксированной» звездой, мы видим, что ось пары повернулась, т. е. звезды ходят одна вокруг другой. Вращаются ли они в согласии с законами Ньютона? Тщательные замеры относительной позиции двойной звезды Сириус даны на фиг. 7.7. Получается превосходный эллипс (измерения начаты в 1862 г. и доведены до 1904 г.; с тех пор был сделан еще один оборот). Все сходится с законами Ньютона, кроме того, что Сириус А получается не в фокусе. В чем же дело? А в том, что плоскость эллипса не совпадает с «плоскостью неба». Мы видим Сириус не под прямым углом к плоскости его орбиты, а если на эллипс посмотреть сбоку, то он не перестанет быть эллипсом, но фокус может сместиться. Так что и двойные звезды можно анализировать в согласии с требованиями закона тяготения.

Справедливость закона тяготения на больших дистанциях видна из фиг. 7.8. Нужно быть лишенным воображения, чтобы не увидеть здесь работы тяготения. Здесь показано одно из красивейших небесных зрелищ - шаровое звездное скопление. Каждая точка--это звезда. Нам кажется, будто у центра они набиты вплотную; происходит это из-за слабой чувствительности телескопа; на самом деле промежутки между звездами даже в середине очень велики, а столкновения крайне редки. Больше всего звезд в центре, а по мере удаления к краю их все меньше и меньше. Ясно, что между звездами действует притяжение, т. е. что тяготение существует и на таких гигантских расстояниях (порядка 100 000 диаметров солнечной системы).

Но отправимся дальше и рассмотрим всю галактику (фиг. 7.9). Форма ее явственно указывает на стремление ее вещества стянуться. Конечно, доказать, что здесь действует закон обратных квадратов, нельзя; видно только, что и на таком протяжении есть силы, удерживающие всю галактику oт развала. Вы можете сказать: «Ладно, все это разумно, на почему же эта штука, галактика, уже не похожа на шар?» Да потому, что она вертится, что у нее есть момент количества движения (запас вращения); если она сожмется, ей некуда будет его девать; ей остается только сплюснуться-(Кстати, вот вам хорошая задача: как образуются рукава галактики? Чем определяется ее форма? Детального ответа на эти вопросы еще нет.) Ясно, что очертания галактики определяются тяготением, хотя сложности ее структуры пока невозможно полностью объяснить. Размеры галактик - около 50 000-100 000 световых лет (Земля находится на расстоянии 8 1 / 3 световых минут от Солнца).

Но тяготение проявляется и на больших протяжениях. На фиг. 7.10 показаны какие-то скопления мелких пятен.

Это облако галактик, подобное звездному скоплению. Стало быть, и галактики притягиваются между собой на таких расстояниях, иначе бы они не собрались в «облако». По-видимому, и на расстояниях в десятки миллионов световых лет проявляется тяготение; насколько ныне известно, закон обратных квадратов действует повсюду.

Закон тяготения ведет не только к пониманию природы туманностей, но и к некоторым идеям о происхождении звезд. В большом облаке пыли и газа, подобном изображенному на фиг. 7.11, притяжение частиц пыли соберет их в комки. На фигуре видны «маленькие» черные пятнышки - быть может, начало скопления газа и пыли, из которых благодаря их притяжению начинает возникать звезда. Приходилось ли нам когда-либо видеть рождение звезды - вопрос спорный. На фиг. 7.12 дано некоторое свидетельство того, что приходилось. Слева показан светящийся газ, а внутри него - несколько звезд. Это снимок 1947. г. Снимок справа сделан через 7 лет; теперь видны уже два новых ярких пятна. Уж не скопился ли здесь газ, не вынудило ли его тяготение собраться в шар, достаточно большой, чтобы в нем началась звездная ядерная реакция, превращая его в звезду? Может быть, да, а может, я нет. Маловероятно, что нам повезло увидеть, как всего за семь лет звезда стала видимой, но еще менее вероятно увидеть рождение сразу двух звезд.